3D Motion capture technologies for
clinical patient monitoring — a short .encontro
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3D Human Pose Estimation (HPE) and Motion Capture (MoCap) is a very popular research Datasets Total Capture [10] | GeoFuse [11] | 8 camera, 12 IMU 2017
topic, as it has several applications. However, its application to clinical, patient in-bed o g&‘;ﬁﬁ[ﬁ? [511’5?(? [13] giﬁ:ﬁfﬁﬁ Sl
monitoring (Fig. 1) is still very challenging, but required for quantitative diagnosis support of * 3D Mocap, clinical MoCap datasets (Table I, II) MVOR [17] 15 Synthetic 077
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epilepsy and sleep monitoring among others. The most promising approaches are the TVORTT i L LT s TABLE |
markerless, Deep Learning (DL) based computer vision (CV), 3D MoCap technologies. Patient Mocap [15] | [13] Synthetic Blanket occlusion | 2016 CURRENT POPULAR DATASETS FOR EVALUATION OF 3D MOCAP
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CLINICAL DATASETS FOR EVALUATION OF 3D MoCaAp

SOTA 3D markerless MoCap

Human body modelling
« Kinematic, planar and volumetric models e.g: SMPL-X (Fig 2.)

Top-down vs bottom-up approaches of 3D MoCap
« Top-Down: 1) Detect all individual person 2) Estimate the 3D
human poses
+ Take more advantage of body models such as SMPL-X
— computationally expensive, especially in crowded spaces
 Bottom-up: 1) Detect all keypoints 2) Associate keypoints to

Challenges from 24/7 in bed monitoring:

Continuous occlusions (clinical personnel, blanket)
« At night only low resolution Infrared (IR) B/W and depth
videos are available
« Exceptionally irregular, unusual movements during seizures
* Close background
« Markers can not be attached

Fig. 2. The SMPL-X model includes, body,

ol ‘ ,» people _ hands and face too, with remarkable expressive
Fig. 1. Example frame of a person + Lower computational cost capabilities. From left to right: Original RGB
monitored in an Epilepsy Monitoring Unit - Grouping of joints and occlusions are challanging image, major joints, skeleton, SMPL (female),
R eS u I tS RGB Monocular 3D MoCap SMPL-X (female). (Fig. adapted from [19])
o « Challangeing due to 3D pose extraction from 2D images can lead to pose ambiguities
Ap proac hes to solve clinical challan ges + Skeleton only and human mesh recovery approaches with Deep Neural Networks (DNNS)
: « Temporo-spatial connections in the DNNs are essential for consistent performance
Occlusions - - | Depth 3D MoCap
* Multiview approaches: If on one viewpoint a keypoint is occluded on another one it can . Resolves depth ambiguity, template based (Fig. 2 - SMPL-X) and template less methods
be still visible. However large memory and computation resource requirements RGB-D 3D MoCap
*  Current top performing approach: TesseTract [2] Fig. 3 . Takes advantage of both color features (RGB) and geometric information (point clouds)
 End-to-end; all feature maps aggregated to a common 4D voxelspace Infrared 3D MoCap

 Able to operate in Monocular setting too
«  Spatio-temporal consistency can mitigate short term occlusions (inter-, extrapolation)
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 Virtually non-existent, there are approaches for 2D pose estimation with RGB-IR fusion

- Proj 4 3D CNN N !
| ‘(’ "'_. £ 1 Mg er(.paeo'-m) Ch allenges
g [’ Lp=(‘ﬁwﬁmh « Several separate solutions to overcome most of the challenges
| i « Key ideas of solutions:
Proj y .
m—*‘—’ I W \ 2 el « Temporo-spatial consistency on every level of the design is essential
- g  Learning formulation has to consider guiding the learning process efficiently utilizing:
> B CEEm «  Metric, contrastive learning or triplet loss (control the feature space input of the same
Proj . . . . . . . . .
(’—,‘_’. I 1N na bened S Becomiciiion Fig. 4. View invariant embedding of human poses, 2D pose, these variations Include resolution, viewpoint and modality IR/RGB.
_ Atertion ~ 3pjoints heatmaps  projections of similar 3D poses are embedded close « Occlusion aware training, and end-to-end training to propagate back the error on the
_ - person Trackdng — o rosemimaen together, and probabilistic where the same 2D pose whole architecture, improving each sub-task, instead of sequential training.
Fig. 3. Full TesseTrack plpel!ne _[2], combines together person q_et_ectlon (3D CNN), tracking projection cover different 3D poses. (Fig. Adapted from . Use prior knowledge such as body models,
(4D CNNs) and pose estimation into one end-to-end network, utilizing 4D voxelspaces. [20]) Pro p 0S ed fu t ure researc h d | rect| on
’ I(\)/Icizl_usllon aware training - training time augmdentatllon_ with %CCItUS'OnS . Aviable approach can be fusing together different data modalities, here RGB-IR-D, and aim
el\r/:c earlnlngt — mtwr[]arov_es_?/lev%/[l)nvarlance 3? tOhCC usion I;;)_ﬁUS H?Sé% _— to exploit their Separate advantages
erﬁgzc(lzd?r?g s?a%ie ?Igi‘;"”x)ar POSES and Turther away different sy poses in the * In the end-to-end learning formulation consider metric, contrastive, resolution and occlusion
: ' aware training
Low resolution « Preprocess the IR and RGB videos with super resolutin and re-colorization techniques
«  Applying super resolution and image enhancement techniques.  Map all modalities (RGB-D-IR + preprocessed) to a common 4D temporo-spatial voxelspace
Train one model for each resolution — impractical * Inthe 4D voxelspace detect and track the person o
« Resolution aware network with contrastive learning [21] ° _Utlllze prior knoyvledge, su_ch as body mod_el for pose and shape estiamtion, furthermore
Video re-colorization phisics and kinematics constrains to further refine the 3D MoCap
. - . P
CNN and GAN based approaches e.g.: VC-GAN [22] 1 [Super Resoiutor detegjt‘i’gnl
« Temporal consistency is essential to not have flickering of colors —> o[ L(PP-MSVSR) Feature extractor _
backbones : » Pose and Shape estimation Phisics and
R —— Person Tracking Xki fi trai
, e-colorization ) . inematics constrains
Occlusion, R > (VCGAN) » IR+RGB: e.g HRNet 4D temporospatial SMPL-X model to refine 3D MoCap
resolution > Depth:e.g. voxelspace
. frames :
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