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Introduction
3D Human Pose Estimation (HPE) and Motion Capture (MoCap) is a very popular research
topic, as it has several applications. However, its application to clinical, patient in-bed
monitoring (Fig. 1) is still very challenging, but required for quantitative diagnosis support of
epilepsy and sleep monitoring among others. The most promising approaches are the
markerless, Deep Learning (DL) based computer vision (CV), 3D MoCap technologies.

Related work
Datasets
• 3D Mocap, clinical MoCap datasets (Table I, II)

SOTA 3D markerless MoCap
Human body modelling
• Kinematic, planar and volumetric models e.g: SMPL-X (Fig 2.)

Top-down vs bottom-up approaches of 3D MoCap
• Top-Down: 1) Detect all individual person 2) Estimate the 3D 

human poses
+ Take more advantage of body models such as SMPL-X
– computationally expensive, especially in crowded spaces

• Bottom-up: 1) Detect all keypoints 2) Associate keypoints to 
people
+ Lower computational cost
- Grouping of joints and occlusions are challanging

Results 
Approaches to solve clinical challanges
Occlusions

• Multiview approaches: If on one viewpoint a keypoint is occluded on another one it can 
be still visible. However large memory and computation resource requirements

• Current top performing approach: TesseTract [2] Fig. 3
• End-to-end; all feature maps aggregated to a common 4D voxelspace
• Able to operate in Monocular setting too

• Spatio-temporal consistency can mitigate short term occlusions (inter-, extrapolation)

• Occlusion aware training - training time augmentation with occlusions
• Metric learning – improves view invariance and occlusion robustness

• Maps close together similar 3D poses and further away different 3D poses in the 
embedding space (Fig. 4)

Low resolution
• Applying super resolution and image enhancement techniques.
• Train one model for each resolution – impractical
• Resolution aware network with contrastive learning [21]

Video re-colorization
• CNN and GAN based approaches e.g.: VC-GAN [22]
• Temporal consistency is essential to not have flickering of colors

Conclusions
In conclusion, markerless 3D Motion capture in clinical environment for patient in-bed
monitoring is very challenging, mainly due to heavy occlusions and the requirement of night
monitoring. This poster presented the main challanges and existing solutions, furthermore
suggested a future research direction.
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Discussion
Challenges
• Several separate solutions to overcome most of the challenges
• Key ideas of solutions:

• Temporo-spatial consistency on every level of the design is essential
• Learning formulation has to consider guiding the learning process efficiently utilizing:

• Metric, contrastive learning or triplet loss (control the feature space input of the same 
pose, these variations include resolution, viewpoint and modality IR/RGB. 

• Occlusion aware training, and end-to-end training to propagate back the error on the 
whole architecture, improving each sub-task, instead of sequential training.

• Use prior knowledge such as body models, 

Proposed future research direction
• A viable approach can be fusing together different data modalities, here RGB-IR-D, and aim 
to exploit their separate advantages
• In the end-to-end learning formulation consider metric, contrastive, resolution and occlusion 
aware training
• Preprocess the IR and RGB videos with super resolutin and re-colorization techniques
• Map all modalities (RGB-D-IR + preprocessed) to a common 4D temporo-spatial voxelspace
• In the 4D voxelspace detect and track the person
• Utilize prior knowledge, such as body model for pose and shape estiamtion, furthermore 
phisics and kinematics constrains to further refine the 3D MoCap

Fig. 2. The SMPL-X model includes, body,

hands and face too, with remarkable expressive

capabilities. From left to right: Original RGB

image, major joints, skeleton, SMPL (female),

SMPL-X (female). (Fig. adapted from [19])
RGB Monocular 3D MoCap
• Challangeing due to 3D pose extraction from 2D images can lead to pose ambiguities
• Skeleton only and human mesh recovery approaches with Deep Neural Networks (DNNS)
• Temporo-spatial connections in the DNNs are essential for consistent performance

Depth 3D MoCap
• Resolves depth ambiguity, template based (Fig. 2 - SMPL-X) and template less methods

RGB-D 3D MoCap
• Takes advantage of both color features (RGB) and geometric information (point clouds)

Infrared 3D MoCap
• Virtually non-existent, there are approaches for 2D pose estimation with RGB-IR fusion
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Fig. 3. Full TesseTrack pipeline [2], combines together person detection (3D CNN), tracking

(4D CNNs) and pose estimation into one end-to-end network, utilizing 4D voxelspaces.

Fig. 4. View invariant embedding of human poses, 2D

projections of similar 3D poses are embedded close

together, and probabilistic where the same 2D pose

projection cover different 3D poses. (Fig. Adapted from

[20])

Fig. 4 The key idea of the proposed future research direction is to map together each modality, RGB-IR-D, to a common 4D

temporo-spatial volume, extract and improve available features, while constraining the feature space to map the inputs of the same

3D poses and MoCaps close.

Challenges from 24/7 in bed monitoring:
• Continuous occlusions (clinical personnel, blanket)
• At night only low resolution Infrared (IR) B/W and depth

videos are available
• Exceptionally irregular, unusual movements during seizures
• Close background
• Markers can not be attached

Fig. 1. Example frame of a person

monitored in an Epilepsy Monitoring Unit


